2/3x^2-5=23

Simple and best practice solution for 2/3x^2-5=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x^2-5=23 equation:



2/3x^2-5=23
We move all terms to the left:
2/3x^2-5-(23)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x^2-28=0
We multiply all the terms by the denominator
-28*3x^2+2=0
Wy multiply elements
-84x^2+2=0
a = -84; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-84)·2
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*-84}=\frac{0-4\sqrt{42}}{-168} =-\frac{4\sqrt{42}}{-168} =-\frac{\sqrt{42}}{-42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*-84}=\frac{0+4\sqrt{42}}{-168} =\frac{4\sqrt{42}}{-168} =\frac{\sqrt{42}}{-42} $

See similar equations:

| 7y+3+4y+7=65 | | 7x-21=33+4x | | 4^{3x}=2^{2x-8} | | 1/2x+3/5=3/4x-1/5 | | -2=q-2 | | 5y+3+3y+7=42 | | 6+8x(12-9)=0 | | 9t+15=66 | | .08(2t+2.50)+3=13.80 | | 4n+7=-2n+31 | | 7p+3=3p-9= | | 3x+5x+6+7=213 | | 4+28=-4(6x-8) | | 20=-5+v/5 | | -4(y-2)+2=34 | | 8/20=4/2b-7 | | -12+21=-3(x+2) | | -20/1=x-3/6 | | 15x+9=1330 | | -7(x+5)+8=-27 | | 9x+15=1330 | | Y=50-20x | | 15x=9=1330 | | 6x+2(2X-8)=34 | | 4n+3-3n=12 | | 4(3x+6)=-14+2 | | 6x-5x+(x^2)=90 | | -w+9=205 | | 3(x+8)=9. | | 9x=15=1330 | | 7=x/8+12 | | −c/7.2+4.7=2.8 |

Equations solver categories